ZIAUDDIN UNIVERSITY EXAMINATION BOARD

IMPORTANT QUESTIONS FOR SECTION B: (NUMERICALS)

3 Marks for each question

MARKS DISTRIBUTION:

DATA GIVEN=0.5 MARK

DATA REQUIRED=0.5 MARK

FORMULA(E)=0.5 MARK

CALCULATION=1 MARK

UNIT=0.5 MARK

1.	he focal length of a concave mirror is 10cm. where should an object be placed so as to get its, re		
	image magnified twice.	[15 cm]	
2.	e radius of curvature of a concave mirror is 40cm. where should an object be placed so as to get its		
	real image magnified four times.	[25 cm]	
3.	The speed of light in water is 2.25 x 10⁵km/s .What is the index of refraction in water	[1.33]	
4.	ravels from air into water whose index of refraction is 1.33. If the angle of incidence is 40° What		
	is the angle of refraction?	[28.90 ⁰]	
5.	The mass of ${}_{6}C^{12}$ nucleus is found to be 0.164 x 10 ⁻²⁷ kg less than its constituents. Calculate t	of ${}_{6}C^{12}$ nucleus is found to be 0.164 x 10 ⁻²⁷ kg less than its constituents. Calculate the energy	
	released. [1.4	76 x 10 ⁻¹¹ J]	
6.	much energy will be released when 15gm of mass is completely transformed to energy?		
	[1	.35 x 10 ¹⁵ J]	
7.	The wave length of a wave is 0.1 nm. Its speed is 3 x1 0 ⁸ ms ⁻¹ . What is the frequency of the	wave?	
		x 10 ¹⁸ Hz]	
8.	ing fork vibrates 256 times each second and produces a wave 1.3m long. Calculate (a) the period		
_	and (b) the velocity of the wave. [3.9 x 10 ⁻³ s, 3	332.8 m/s]	
9.	A radio station broad casts an AM radio waves whose frequency is 1230 x 10 ³ Hz and an FM	radio	
	wave whose frequency is 91.9 x 10° Hz. Find the distance between adjacent crest in each w	ave.	
	[24390 cm,	326.44cm]	
10.	. A sound wave of frequency 400 Hz and wavelength 3m passes through a certain medium. C	alculate	
	the velocity of the wave in the medium.	1200 m/s J	
11.	. The potential difference applied to the terminals of a portable radio is 9.0 volts. Find the re- the radio if a current of 25 mA is flowing through it.	sistance of	